

Diversified Bacteria Causing Potato Blackleg and Soft Rot Related to Their Management

Jay Hao

University of Maine, School of Food and Agriculture Jianjun.hao1@maine.edu; (207)581-2564

Home

News -

Radio

Outbreak of Potato Blackleg and Soft Rot (PBSR) in the Northeaster US

- In 2015, PBSR was observed in the Northeastern region
 - Associated with seed transmission of a bacteria
 - PBSR threatened Maine's potato production, which is a major seed

ducer

Potato News Today

A no-frills, no-nonsense daily account of breaking global potato news

stories

Television •

lic

Classical

Education <

Events **•**

Low emergence of potatoes due to blackleg

Symptoms of potato blackleg and soft rot

Stand loss, wilting and yellowing leaves, brown, black, and decayed stems, storage rot

Source: Steven B. Johnson

Disease Cycle – PBSR is a Seedborne Disease

Questions on the PBSR outbreak

- 1. What are the origin and pathogens causing the outbreak?
- 3. How did the outbreak occur?
- 4. How do the pathogens survive?
- 5. How to manage the disease?

Outbreaks in history: old disease? New pathogen?

Dickeya dianthicola was associated with the PBRS outbreak

- ★ D. dianthicola
- ★ D. chrysanthemi
- ★ 🛛 P. parmentieri
- \star P. brasiliense
- 🛨 Un-identified

Dickeya dianthicola isolates were in 3 groups (genotypes)

0.010

Ge et al. 2021. Plant Disease105: 1976-1983

Phylogenetic analysis was done based on DNA sequencing of the 16S rRNA (1440 bp) and gapA (850 bp) genes.

Genotypic distribution of Dickeya dianthicola in the NE US

Samples were collected from 2015 to 2019 (n = 256) Ge et al. 2021. Plant Disease105: 1976-1983

Type I, predominant, comprising 95% in Maine, and 83% from all other states.

Type II, continuously present in at least one state every year at relatively lower percentages than Type I. Type III, only present in 2016 in Pennsylvania and New Jersey, and 2019 in Massachusetts, and was not detected in Maine.

Phylogenetic tree based on SNPs in the core genome, N = 32

Ge et al. 2021. Plant Disease 105: 3946-3955

Pennsylvania Flower Growers, Bulletin: 205

Bacterial Slow Wilt or Stunt of Carnations

Paul E. Nelson, Robert S. Dickey, and L. P. Nichols Departments of Plant Pathology Cornell University and The Pennsylvania State University

Bacterial slow wilt or stunt, a serious disease of carnation in Europe, was first found in the United States in 1954-55, on carnation plants grown in western New York. In April 1962 it was found on carnations in southeastern Pennsylvania and again in November 1967 in the same range.

Type IV secretion system (T4SS) involved in genetic exchange or effector translocation

Ge et al. 2021. Plant Disease 105: 3946-3955

Conclusions

1. Dickeya dianthicola genotype I was the predominant strain associated with the outbreak of 2015

Bacterial communities in PBSR potato tissues examined using metagenomics

Dickeya detected		Dickeya detected	Pectobacterium detected	Crown of commiss
		<u></u>		Gloup of samples
.8788 128 51 68 08 207	1389 3219 3219 2241 44902 44727 6508 6508 6508 3369 3369 3369 3369 3369 3369 3369 336	702 602 988 988 988 323 323 323 323 554 6442 6452 6452 6452 6452 6452 6452	7039 3215 3215 501 501 501 4622 4462 4462 568 568 573 583 568 573 583 568 573 583 568 573 583 568 5583 5583 5583 5583 5583 5583	# of R eads
1 0 0	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •		D. aquatica
3 5 4 6 5 -	1 1 2 4 1 2 3 5 1 1 1 2 1 2 1 5 1 1 2 4 8 3 5 1 1 1 2 1 2 1 5 1 1 1 2 4 1 2 3 5 1 1 1 1 2 1 2 1 5 1 5 1 5 1 5 1 5 1 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 4 7 I I I 2 2 0 0 0 5 0 4 3 0 3 4 0 5 I 3	D. chrysanthemi
999 81 82 87 87 73 92	97 97 99 99 99 99 99 99 99 99 95 95 95 95 95	900 117 220 222 222 222 222 222 222 222 222 22	00000000000000000000000000000000000000	D. dadantii
98 81 82 86 72 91	97 99 999 999 999 999 999 994 994 994 99	50 16 20 220 220 220 220 220 220 220 220 220	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D. dianthicola
0 0 0 0	0 0 0 - 0 0 - 0 0 0 0 0 0 0	<u> </u>		D. fangz hongdai
		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		D. par adis iaca
0 0 0		• • • • • • • • • • • • • • • • • • •		D. zeae
0 9 0		0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P. aroidearum
0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 0 1 1 1 0 0 1 2 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	P. atrosepticum
0 0 - 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P. betavas culor um
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • •		P. cacticida
0 1 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0	P. c. subsp. actinidiae
0 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P. c. subsp. brasiliense
2 8 4 9 2 0	0 2 0 0 0 0 0 0 0	77 77 117 29 29 29 29 20 10 10 10 10 10 10 10 10 10 10 10 10 10	0 57 63 35 63 35 6 6 6 6 6 6 7 1 97 1 94 97 71 25 25 25 25 25 25 25 25 25 25 36 36 36 36 36 36 36 36 36 36 36 36 36	P. c. subsp. carotovoum
2 - 1 - 2 - 3 - 0 2 - 1 - 1 - 1 - 0 2 - 1 - 1 - 1 - 0		$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	0 63 64 64 37 37 2 2 2 2 2 2 6 1 6 1 2 6 38 93 38 95 38 95 22 6 1 22 6 38 4 95 5 38	P. c. subsp. odoriferum
3 1 4 4 0 3 4 4 4 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 6 3 7 1 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 5 4 5 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	98 98 33 33 60 97 97 97 97 99 99 99 99 99 88 88	P. parmentieri
3 8 4 2 4 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 6 1 5 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	999 441 98 3 3 997 997 997 997 997 997 997 997 991 11 77 112 71 12 71 71 3 3 6 86	P. polaris

Pathogenicity of *Pectobacterium* spp.

PCO: P. carotovora subsp. odoriferum, PCB: P. brasiliense, PPO: P. polaris, PPA: P. parmentieri

Pathogen detection of potato samples indicating a progressive change of PBSR epidemic

Dickeya dianthicola
 P. parmentieri
 Dd + Pp

Taxonomy of PBRS pathogens

2018 field trial –

Blackleg of potato inoculated with *D. dianthicola* OR/AND *P. parmentieri*

Ge et al. 2021. Microorganisms 9: 316.

ME175 ME30 mix NT

• ME175: Pectobacterium parmentieri; ME30: Dickeya dianthicola; mix: combined; NT: non-inoculated

Synergism effect from co-inoculation of *Dickeya dianthicola* (DDI) and *Pectobacterium parmentieri* (PPA) in the field

Ge et al. 2021. Microorganisms 9: 316.

Conclusions

2. Multiple species of *Dickeya* and *Pectobacterium* cause potato blackleg and soft rot

3. Co-infection with multiple species of bacteria may have a synergistic effect making the disease even worse

Bacterial distribution on potato tubers

- Potato tubers usually harbor low numbers of the bacteria in a quiescent form, often for a long time (Helias et al., 2000).
 - stolon end (Czajkowski et al., 2009)
 - lenticels and suberized wounds (Pérombelon, 2002).
- Bacteria concentrated in potato stems in the first 15–20 cm above ground level (Hélias et al., 2000)
- Bacteria reside in lenticels in dormant status

Hao/Secor tests (% Dickeya positive)

Hao tested 5 months later than Secor

Chi-square test on tissue distribution of *Dickeya dianthicola* (ME30) and *Pectobacterium parmentieri* (ME175) on potatoes

Catagory	Frequency			Chi Sa	٩t	
Category	Stem	Tuber (observed)	Tuber (expected) ^a	Chi-Sq	ai	Pvalue
ME30 positive	307 (40.3)	29 (23.8)	49 (40.3)	13.64	1	<0.001
ME30 negative	454 (59.7)	93 (76.2)	73 (59.7)			
Total	761	122	122			
ME175 positive	394 (51.8)	77 (63.1)	63 (51.8)	6.43	1	<0.01
ME175 negative	367 (48.2)	45 (36.9)	59 (48.2)			
Total	761	122	122			

Values are presented as number (percentage) of sample.

^a the percentage of pathogens on stems were viewed as the expected percentage of pathogens on tubers.

Viable but not culturable (VBNC) status used for dormancy

MAINE 24

Storage period is the key for tuber cross-infection, 2022

- Obs. 1. Cutting. Epidemics occurs in a long-stored CUT tubers under unfavorable conditions, but not if planted immediately after cutting
- Obs. 2. Non-cutting. Disease incidence is higher for longer storage period

Inoculation method: whole potato tubers were inoculated with *Dickeya dianthicola* strains: Types I, II, III using vacuum infiltration and mixed with non-inoculated tubers. NI: non-inoculated.

Dickeya dianthicola is not vectored by green peach aphids (Myzus persicae) and Colorado potato beetles (Leptinotarsa decemlineata)

Insinga et al. 2021. PhytoFrontiers 1:160-172

• But *Pectobacterium* is transmitted by flies

Can water be a source of inoculum? -Dickeya dianthicola found in water courses

- Australia: there is a direct link from waterways to infected potatoes via irrigation (Cother & Gilbert, 1990), but no direct evidence of infection
- The bacteria found in Sweden (Olsson, 1985), The Netherlands (Roozen, 1990; van Vuurde and de Vries, 1992), Scotland (Cahill et al., 2010), England (Toth et al., 2012), USA (Florida, Norman et al., 2003)
- South Africa, van der Waals et al. identified pathogenic species which included *Dickeya* spp., *Pectobacterium* spp.
- **Finland**: *D. dianthicola* showed **pathogenic** on potato plants and tubers (Laurila et al., 2006, 2008, 2010).

Dickeya isolated from water

• Maine

MAINE

- 40.5% water samples were Dickeya spp. (D. dadantii, D. zeae, D. dianthicola, D. aquatica)
- Pectobacterium brasiliense, P. carotovorum, P. atrosepticum and P. parmentieri
- Water samples from one pond treated with chlorine were negative for both *Dickeya* spp., and *Pectobacterium* spp.,
- MA: one water sample showed *Dickeya* positive
- Canadian results supported this finding

Pathogenicity assay

Poking Method

□ Stem injection

Conclusions

- 4. *Dickeya dianthicola* is more associated with stem infection and *Pectobacterium parmentieri* is for tuber infection
- 5. PBSR pathogens survive on potato tubers and may stay alive in dormant status
- 6. *D. dianthicola* is not likely transmitted by insects
- 7. Water can be an important source of inoculum of PBSR

Responses of 204 potato diploid clones to *Dickeya dianthicola* ME30 and *Pectobacterium parmentieri* ME175, 2017

Potato varieties have various responses to bacterial infection

'Caribou Russet

Conclusions

8. Some potato varieties are tolerant to PBSR although not completely resistant.

9. Breeding for resistance is a possibility for managing PBSR

Summary

- Multiple species of *Dickeya* and *Pectobacterium* cause PBSR, and the prevalent species tend to be switched in the past years
- The predominant Type I strain was indigenous, homogeneous, endemic to the US, and distinct from previously reported *D. dianthicola* strains, suggesting a recent incursion of this strain into potato production
- Management of PBSR is needed

PBSR management based on disease

anidamialagy

Nature of the pathogens	Management strategies			
Seed-borne: soil dwellers, groundwater	Seed testing and certification; Mini tubers free of infection Seed treatment			
Accumulation of infection via seed generations	Crop rotation			
Broad host range, alternative hosts	Remove weeds and volunteer potatoes			
Plant responds to PBSR at different levels	Selecting tolerant varieties			
Survive better in water but soil	Clean irrigation water			
 Spread via: free water in the soil machinery aerosols: up to 3,000 feet 	 Drainage, harvest under drying conditions Sanitation, disinfection of equipment, rouging, cultural practices 			
Infection via wounds (cutting) and natural openings, lenticels	Avoid bruising and damaging of tubers			
Temperature regulates bacterial activities	 Temperatures < 40 F Avoid harvest at T > 65 F and rapid dry tubers 			
Rot in storage	Adjust ventilation, temperature & moisture in storage			

Collaborators

- Steven B. Johnson, University of Maine
- Gregor Porter, University of Maine
- Robert P. Larkin, USDA-ARS, Maine
- Amy Charkowski, Colorado State University
- Gary Secor, North Dakota State University
- Tech support
 - Elbridge Giggie
 - Peter LeVasseur
 - Bradly Libby
 - Lihua Yang

- Graduate students
 - Tongling Ge
 - Fatemeh Ekbataniamiri
 - Xiuyan Zhang
 - Helen Jiang
 - Nayara Marangoni
- Funding
 - Maine Potato Board
 - USDA-ARS Potato Project
 - USDA-NIFA-SCRI

Thank you

-

TT len