Project Title:

Breeding New Varieties to Provide Marketing Opportunities and Improved Pest Resistance (2016 Growing Season)

Investigators:

Gregory A. Porter, Paul Ocaya, and Tammy Mills; School of Food & Agriculture, University of Maine, Orono.

Executive Summary:

The University of Maine Potato Breeding Program uses traditional plant breeding to create, select, and develop new potato varieties for Maine and beyond. The objective is to develop and select new potato varieties which will provide marketing opportunities to the Maine Potato Industry and/or solve disease management problems. During 2016, our research effort by market category was: 50% russets and long-whites for processing and/or fresh market; 40% whites/yellows for chipping and/or fresh market; and 10% reds and specialty varieties. The Maine breeding program is the only eastern U.S. program with an emphasis on russets and long-whites with processing and fresh market potential. This report provides a summary of the 2016 activities.

Caribou Russet (AF3362-1) was named and released during 2015. It has shown commercial promise as a dual-purpose russet with outstanding yields, bruise resistance, relatively low hollow heart incidence, moderate scab resistance, and reasonably good appearance for fresh market. Sebec (AF0338-17) and Easton (AF3001-6) were named and released during 2014. Sebec is primarily an alternative to Atlantic for chipping out of the field in the mid-Atlantic and S.E. states. It combines high yields, good out-of-field chip quality, verticillium resistance, and much less internal heat necrosis and hollow heart than Atlantic. Chip growers need to reduce fertility levels and harvest it slightly later than Atlantic to obtain adequate specific gravity for out-of-field chipping. It does not chip well from storage. Sebec can also be used for fresh market, though it greens quickly under fluorescent lights and is moderately susceptible to scab. Easton, a long-tuber-type clone with netted to lightly russet skin, has outstanding fry color and yields, good tuber type, relatively little hollow heart, and very good verticillium wilt resistance. It requires much less N fertilizer than Russet Burbank. Easton was a top performer in the National Fry Processing Trials (NFPT); however, potential weaknesses with rot, skinning, and bruise susceptibility have limited its commercial application.

We have many more promising clones in the development pipeline. Examples include: AF4124-7, AF4172-2, AF4296-3, AF4872-2, AF5071-2, AF5091-8, AF5164-19, AF5179-4, AF5406-7, AF5406-10, AF5407-13, and AAF07521-1 (russets for fry processing); AF5312-1 and AF5468-5 (promising fresh market russets), AAF08434-1 and WAF10073-3Rus (dual-purpose russets); AF4157-6 (an early-maturing chipping clone); AF4648-2 (a mid-season chipper and fresh market clone with scab, PVY, and golden nematode resistance); AF5040-8 (a mid-season chipper with high yields and specific gravity); AF5429-3 (a mid-season chipper with...
high yields and specific gravity, as well as verticillium wilt, blackspot, and golden nematode resistance; AF4138-8, AF5280-5, AF5450-7, and NDAF102629C-4 (fresh market whites with scab resistance); AF4831-2 (a pretty red with oblong tubers, good quality, and moderate scab resistance); AF4659-12 (a yellow-fleshed “pinto-type”, fingerling/roaster, specialty variety with an interesting red and yellow skin pattern and excellent cooking quality) and AF5245-1 (a medium-early, purple-skinned, white-fleshed clone with scab resistance). We also have several purple- and red-fleshed clones in the development pipeline.

Priorities in the area of disease resistance are: late blight, scab, and PVY. Because of increasing concerns about PVY in the U.S. potato industry, we have dramatically increased our crossing and selection program for PVY resistance since 2011. Although these diseases are our top priorities, our work on disease and pest resistance also included efforts to develop varieties with resistance to: PLRV, verticillium wilt, fusarium dry rot, pink rot, soft rot, nematodes, bruising, internal defects, insects, etc. Marker-assisted selection for potato virus Y (PVY) and golden nematode resistance is now an integral part of the breeding program. We are now developing marker-assisted selection procedures for late blight resistance. Advanced clones in our program typically have resistance to several important potato pests. As an example, AF4648-2, a promising dual-purpose chipping and fresh market white, combines excellent scab resistance, golden nematode, and PVY resistance with moderate late blight, pink rot, and soft rot resistance. Progress in breeding for late blight and scab resistance has been dramatic. We currently have 70 late blight resistant 3rd-year clones (70 of 231, 30.3%) and 58 more 4th-year and older late blight resistant clones moving through the program. Sixty-two of 139 selections (44.6%) had scab resistance in our 2016 screening trial. Clones with late blight, scab, and/or PVY resistance are present at an increasing frequency in our program and several are advancing toward commercialization. These clones will be moved forward based on field performance and either be developed for commercial release or used as breeding material to produce future commercially valuable cultivars with field resistance to late blight, PVY, and/or scab.

Project Objectives:

1. To breed, select, and develop new potato varieties for Maine which provide marketing opportunities and/or improved pest/disease resistance.

Grant Received:

$35,000

Accomplishments to Date:

The University of Maine Potato Breeding Program uses traditional plant breeding to create, select, and develop new potato varieties for Maine and elsewhere. The objective of this research is to develop and select new potato varieties which will provide marketing opportunities to the Maine Potato Industry and/or solve disease management problems. Funding provided by the ME Potato Board and USDA-ARS has allowed us to incorporate marker-assisted selection for potato virus Y (PVY) resistance and golden nematode. We are now developing marker-assisted selection procedures for late blight resistance. During 2016, our research effort by market category was as follows: 50% russets and long-whites for processing and/or fresh market;
40% whites/yellows for chipping and/or fresh market; and 10% reds and specialty varieties. The Maine breeding program is the only eastern U.S. program with an emphasis on russets and long-whites with processing and fresh market potential. Priorities in the area of disease resistance were: late blight, scab, and PVY. Because of increasing concerns about PVY in the U.S. potato industry, we have dramatically increased our crossing and selection program for PVY resistance since 2011. Although these diseases were our top priorities, our work on disease and pest resistance also included efforts to develop varieties with resistance to: PLRV, verticillium wilt, fusarium dry rot, pink rot, softrot, nematodes, bruising, internal defects, insects, etc. This report provides a summary of the 2016 activities.

Progress on Russets/Long Whites: Caribou Russet (AF3362-1), a dual-purpose russet, was named and released during 2015. Plant Variety Protection (PVP) was obtained and it has been licensed by the Maine Potato Board. It has outstanding yields, bruise resistance, relatively low hollow heart incidence, moderate scab resistance and reasonably good appearance for fresh market. Baked quality has been good. It may also be a suitable alternative to Shepody for out-of-field and short-term storage fry processing. PVY susceptibility has slowed building of seed stocks for commercial trials and management of PVY in seed stocks is expected to be challenging for this variety. It is susceptible to internal heat necrosis in southern areas. Easton (AF3001-6) was named and released during 2013/2014. PVP has been obtained and Easton has been licensed by the Maine Potato Board. Easton, a long-tuber-type clone with netted to lightly russet skin, has outstanding fry color and yields, good tuber type, relatively little hollow heart, and very good verticillium wilt resistance. It requires much less N fertilizer than Russet Burbank. Easton was a top performer in the National Fry Processing Trials (NFPT); however, potential weaknesses with rot, skinning, and bruise susceptibility have limited its commercial success.

AF5312-1 and AF5468-5 are promising fresh market russets. In addition, we currently have many other advanced russet/long-white clones in field and processing trials with McCain Foods and other processors. The most advanced and promising russets for fry processing are AF4124-7, AF4172-2, AF4296-3, AF4872-2, AF5071-2, AF5091-8, AF5164-19, AF5179-4, AF5406-7, AF5406-10, AF5407-13, and AAF07521-1. AAF08434-1 and WAF10073-3Rus remain under evaluation as possible dual-purpose russets. Yield, tuber type, size profile, internal quality, bruise resistance, and fry processing characteristics are key selection criteria. Promising russet selections with processing potential have been entered into the industry-funded National Fry Processing Trials (NFPT) in ID, ME, MI, ND, OR, WA, and WI. Easton (AF3001-6) and AF4296-3 were among the top performers for yields, low acrylamide levels, and fry quality in the NFPT trials. Caribou Russet (AF3362-1) and AF4124-7 had good yield and quality in NFPT, but did not have exceptionally low acrylamide levels in fries compared to the standard varieties. AF4872-2 had low acrylamide levels in fries, but only had good yield and type in the East. Clones that were particularly good performers in NFPT during 2015 and/or 2016 were AF5179-4, AF5091-8, AF5071-2, and AAF07521-1.

Progress on Whites and Chippers: Our program is an active participant in the National Chip Variety Trials (NCPT). The NCPT has 10 trial sites [CA, FL, MI, NC, ND, NY OR, TX, and WI(2)] representing major production areas of the U.S. The most promising clones from NCPT enter the Potatoes USA/ Snack Food Association (SFA) chipping trials in CA, FL, ID, ME, MI, MO, NC, ND, OR, PA, and WI, as well as the Potatoes USA NextGen/FastTrack chip evaluation program. Each year we submit ~15 promising chipping clones to NCPT for national
evaluation. AF4648-2 and AF5040-8 are currently in the National SFA chipping trials, while AF5040-8 is in the FastTrack chipping program. Sebec, AF4157-6, and AF4648-2 have been in the FastTrack chipping program in recent years.

Sebec (AF0338-17) was named and released during 2013/2014. PVP has been obtained and Sebec was licensed by the Maine Potato Board. Sebec is primarily an alternative to Atlantic for chipping out of the field in the mid-Atlantic and S.E. states. It combines high yields, good out-of-field chip quality, verticillium resistance, and much less internal heat necrosis and hollow heart than Atlantic. Growers need to reduce fertility levels and harvest it slightly later than Atlantic to obtain adequate specific gravity for out-of-field chipping. Sebec can also be used for fresh market, though it greens quickly under fluorescent lights and is moderately susceptible to scab.

AF4648-2 combines excellent scab resistance, PVY and golden nematode resistance with good tuber appearance, yields, specific gravity, internal quality, bruise resistance, and chip quality. It also has moderate late blight, pink rot, and soft rot resistance. It has potential for fresh market and as a chiper for conditions when common scab limits other varieties. Long-term chip color can be quite good as long as it is harvested before chilling conditions occur and then is stored at 50 to 55 F. It does not chip well from cool storage and it is quite susceptible to powdery scab. AF4157-6 is a promising chipping clone that combines early maturity and good out-of-field chipping in the southern states with excellent storage chip color, including low sugars and the ability to chip from cool storage. It has relatively small tuber size, inconsistent yields, and is scab susceptible, but has moderate resistance to pink rot. AF5040-8 has been a top performer in the national chip trials (NCPT) due to its high yields, high specific gravity, and good internal quality. It has consistently out produced Atlantic and Snowden in Southern trials, while providing specific gravity equal to or exceeding Atlantic. I am currently thinking that its best market fit is for out-of-field chipping in the south. It has attractive tubers, high specific gravity, and very pale yellow flesh. It is moderately susceptible to common scab. AF5040-8 is currently in the Potatoes USA FAST-TRACK program due to its potential as a chiper for southern areas. AF5429-3 is another promising advanced chipping clone in the program. It has high specific gravity, excellent chip color, and resistance to golden nematode, verticillium wilt, and blackspot bruise. Six additional promising chipping clones are being promoted to our 2017 advanced trials.

AF4648-2 (described above) is a promising candidate for both chipping and fresh market use. AF4138-8, AF4552-5, AF5225-1, AF5450-7, and NDAF102629C-4 are attractive fresh market whites with high yields and good quality for fresh market. Most of our fresh market candidates have good common scab resistance. These clones are advancing through the program and are being extensively trialed to determine which will merit entry into commercial trials and seed production.

Progress on Reds and Specialty Types. Growers have expressed a strong interest in new red varieties that have smooth skin, attractive appearance when grown on our soils, and ability to hold their skin color in storage. Reds are a critical component of the seed potato market and new, well-adapted reds will provide opportunities for our seed growers, especially in VA, NC, FL, and other southern states. This is a new component of the program which was established based on grower input. In addition to our own crosses, red seedling tubers are brought in from WI, ND, CO, and ID and are selected for appearance and yield under northern ME conditions.
After two years of selection in northern ME, seed is sent to FL, NC, and central ME trials for additional selection under diverse soil and environmental conditions. This process should result in the development of new, widely adapted, red-skinned varieties. Several are showing good potential though it has been difficult to find the ideal combination of skin quality, yields, bruise/skinning resistance, and PVY tolerance. AF4831-2 is currently out most advanced red. It has pretty skin, relatively small oblong tubers, moderate scab resistance, verticillium resistance, and good internal quality. Seed stocks of AF4831-2 and several other promising reds are being expanded for larger-scale testing in 2017 and beyond.

We currently have four promising specialty clones that should be of interest to small-scale growers. AF4659-12, a yellow-fleshed “pinto-type” specialty variety with an interesting red and yellow skin pattern. It produces small, fingerling-type tubers that are excellent roasted, boiled, or fried. AF5245-1is purple skinned with white flesh and moderate scab resistance. It is very attractive and has good yields, tuber size, and internal quality. It has much better purple skin color than Caribe, Purple Viking, and other standard purples. AF5412-3 has purple skin and flesh along resistance to late blight, verticillium wilt, and net necrosis. AF5414-1 has red skin and flesh along resistance to common scab, late blight, and net necrosis.

Progress of Disease Resistance: Advanced clones in our program typically have resistance to several important potato pests and/or physiological disorders. As examples, Caribou Russet has resistance to scab as well as excellent bruise resistance; Easton and AF4296-3 have good verticillium resistance; AF4296-3 has good fusarium resistance, AF4648-2, a promising chipper and tablestock clone, combines excellent scab and PVY resistance with moderate late blight, soft rot, and pink rot resistance. Priorities in the area of disease resistance are: late blight, scab, and PVY. Because of increasing concerns about PVY in the U.S. potato industry, we have dramatically increased our crossing and selection program for PVY resistance since 2011. Although these diseases are our top priorities, our work on disease and pest resistance also included efforts to develop varieties with resistance to: PLRV, verticillium wilt, fusarium dry rot, pink rot, soft rot, nematodes, bruising, internal defects, insects, etc. Marker-assisted selection for potato virus Y (PVY) and golden nematode resistance is now an integral part of the breeding program. We are now developing marker-assisted selection procedures for late blight resistance. Progress in breeding for late blight and scab resistance has been dramatic. We currently have 70 late blight resistant 3rd-year clones (70 of 231, 30.3%) and 58 more 4th-year and older late blight resistant clones moving through the program. Sixty-two of 139 selections (44.6%) had scab resistance in our 2016 screening trial. Clones with late blight, scab, and/or PVY resistance are becoming present at a higher frequency in our program and are increasingly advancing toward commercialization (see Table 1 for details). These clones will be moved forward based on field performance and either be developed for commercial release or used as breeding material to produce future commercially valuable cultivars with field resistance to late blight, PVY, and/or scab.

Breeding and Selection Approach: Crossing takes place at Aroostook Research Farm using parents from our program, Cornell University, Michigan State, North Dakota State University, University Wisconsin, and the USDA-ARS, as well as named varieties from North and South America as well as Europe. We generate true potato seed from the crosses and use these seeds to produce greenhouse seedling tubers. Excess greenhouse tubers are exchanged with the USDA-ARS Idaho, Colorado, North Dakota, and Wisconsin breeding programs to gain access to russets, reds, and chippers from their programs that will strengthen our program’s
ability to provide new varieties for the Maine industry. This type of exchange program improves
the efficiency of potato breeding and variety development throughout North America.

The University of Maine Potato Breeding Program is now planting ~50,000 single-hills at
Aroostook Research Farm during each season (this represents ~50% of the initial screening of
potato clones conducted in the eastern U.S.). These single-hill plots were derived from
greenhouse tubers grown during the previous year (by our program, the USDA-ARS Aberdeen,
North Dakota State University, Colorado State University, and the University of Wisconsin) and
represent the first year of field selection to produce new potato varieties. Each single hill is a
candidate new potato variety developed from crossing two parents with desirable characteristics
(e.g. PVY resistance, market quality, etc). At harvest, clones from the single hills (~1200,
typically 1-3%) are selected for further evaluation based on their yield and appearance. The
~1200 clones selected from the single hills are evaluated in year#2 in our 8- and 12-hill plots.
Those that are selected during the 2nd field year (~300 clones) are screened again during year #3
in ME (northeast conditions) and NC (southeast climatic conditions). The whites and reds are
also screened in FL (southeast climatic conditions). Late blight susceptibility is determined by
screening this 3rd-year material in PA. Only the clones with outstanding yields, market quality,
and/or pest resistance are kept at each stage. Seed is multiplied in year #3 so that the top
performers can enter 4th year replicated yield trials (ME) and regional performance trials (FL,
NC, VA, PA, and OH); also the National Chip Variety Trials, NCPT which has 10 trial sites
[CA, FL, MI, NC, ND, NY OR, TX, and WI(2)] representing major production areas of the
U.S.). The most promising of these enter the Potatoes USA/Snack Food Association (SFA)
chipping trials in CA, FL, ID, ME, MI, MO, NC, ND, OR, PA, and WI. Promising russet
selections with processing potential enter the National Fry Processing Trials (NFPT in ID, ME,
MI, ND, OR, WA, and WI). Over the course of six years of field selection the clones are
evaluated for yield, quality, disease resistance, bruise susceptibility, processing characteristics,
and other attributes. It takes six to eight field seasons of selection and evaluation of the advanced materials at multiple trials sites to identify potato clones that show enough promise to warrant seed production for commercial-scale evaluation. Because each step of the process from crossing through initial field selection to multi-site testing of advanced materials takes
place during each growing season, our program generates a steady stream of promising candidate potato varieties than have the potential to benefit the potato industry. It can be thought of as a conveyor belt with many (~50,000 per year) potential varieties entering the front end and a handful of new candidate varieties with commercial potential coming out the end each year. The progression on clones and selections by field selection year is presented in Table 1. We work with growers and processors to commercially test the most promising clones and determine which merit commercial release.

Crosses conducted in the Aroostook Research Farm greenhouse and at Orono during spring 2016 resulted in 366 families and ~202,000 true potato seed (TPS). The top priorities represented in the 2016 crosses were improved russet, processing, and chipping clones, especially with late blight, scab, and/or virus resistance. Seedling tubers (52,539) from prior ME crosses and from germplasm exchanges with other breeding programs (WI, CO, USDA-ARS, and ND) were planted in the field and selected for performance under ME growing conditions. We selected 1581 (3.0%) for continued evaluation in 2017. By category the selections were as follows: 644 (41%) round to oblong white-skinned potatoes for fresh and/or chipping markets; 223 (14%) red- or purple-skinned potatoes for fresh market; and 714 (45%) long-tuber-type whites and russets for fresh and/or processing markets. The selection of red- or purple-skinned potatoes (5 to 14% since 2013) is a marked change for the program and reflects grower interest in developing red-skinned varieties with excellent appearance under ME and Eastern conditions.

A total of 322 second-year clones were selected during 2016 (322 out of 1420, 22.7%). Of these selections, 126 (39%) were russets or long whites. There were 150 (47%) round-white or yellow-fleshed selections and 46 (14%) were red-skinned or specialty clones. Many of these clones were derived from parents with late blight, PVY, and/or other key disease resistance traits. The 322 selected second-year clones will be advanced to 3rd year testing during 2017 in ME, FL, NC and PA.

Thirty of 45 (67%) advanced selections (6th year or older clones) were retained for further evaluation in ME and elsewhere. The advanced clones that have been selected are distributed as follows: 16 russets and long whites (53%), 9 chippers, fresh market, yellows, or dual-purpose whites (30%), and 5 reds, purples, and specialty types (17%). Six have late blight resistance, 16 have scab resistance, and two are PVY immune.

Twenty of 38 (53%) intermediate selections (5th year clones) were retained for further evaluation next year. These were distributed as follows: 10 russets and long whites (50%), 6 round-whites (30%), and 4 red-skinned or specialty clones (20%). Two have late blight resistance, 9 have scab resistance, and two are PVY immune.

Forty-two of 74 (57%) 4th year clones were retained for further evaluation next year. These were distributed as follows: 27 russets and long whites (64%), 11 round-whites, yellows, and chippers (26%), and 4 colored-skinned or specialty clones (10%). Seven have late blight resistance, 19 have scab resistance, and two are PVY immune.

Ninety of 254 (35%) 3rd year clones were retained for further evaluation next year. These were distributed as follows: 43 russets and long whites (48%), 32 round-whites and yellows
(36%), and 15 colored skinned or specialty clones (16%). Thirty-three have late blight and 19 are PVY immune. Scab resistance has not been formally tested at this stage through susceptibility has been used as a discard criteria to this point.

Tissue culture, minitubers, N1 or N2 seed of the following advanced clones are available from the Maine Seed Potato Board or will become available after the 2017 harvest: Sebec (AF0338-17), Easton (AF3001-6), Caribou Russet (AF3362-1), AF4138-8, AF4124-7, AF4157-6, AF4172-2, AF4296-3, AF4648-2, AF4659-12, AF4872-2, and AF5040-8. Sebec, AF4157-6, AF4296-3, AF4648-2, and AF5040-8 are or have been part of the Fast-Track seed production program of the US Potato Board and/or the US Potato Board/SCRI acrylamide project. This program produces minitubers and start-up seed production for processing trials.

Table 1 Selected clones by field year, market type, and known resistances to late blight, scab, or PVY.

<table>
<thead>
<tr>
<th>Field Selection Year</th>
<th>Clones</th>
<th>Market Type (#, %)</th>
<th>Clones with Known Disease Resist.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Late Blight</td>
<td>Scab</td>
</tr>
<tr>
<td>1<sup>st</sup> single hills</td>
<td>1581</td>
<td>644 (41%) whites, yellows</td>
<td>223 (14%) reds, specialties</td>
</tr>
<tr>
<td>2<sup>nd</sup> 8- or 12-hills</td>
<td>322</td>
<td>150 (47%) whites, yellows</td>
<td>46 (14%) reds, specialties</td>
</tr>
<tr>
<td>3<sup>rd</sup> 60-hills</td>
<td>95</td>
<td>32 (36%) whites, yellows</td>
<td>15 (16%) reds, specialties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>4<sup>th</sup> Prelim. YT</td>
<td>42</td>
<td>11 (26%) whites, yellows</td>
<td>4 (10%) reds, specialties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>5<sup>th</sup> Intermed. YT</td>
<td>20</td>
<td>6 (30%) whites, yellows</td>
<td>4 (20%) reds, specialties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>≥6 Advanced YT</td>
<td>30</td>
<td>9 (30%) whites, yellows</td>
<td>5 (17%) reds, specialties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>
Licensing/Royalties/Commercialization. Until recently, most releases have been public releases (the exception was Reeves Kingpin, licensed initially to McCain Foods). Policies of U.S. Breeding Programs have changed dramatically with Plant Variety Protection and most are now protected and require licensing and royalties. Most future releases from the Maine Breeding Program are likely to be via licensing with favorable terms for Maine growers and/or companies. The Maine Potato Board, University, and stakeholders have worked together to develop a release plan for our varieties. We have named and released Sebec (AF0338-17), Easton (AF3001-6), and Caribou Russet (AF3362-1) since 2013/2014. Plant variety protection (PVP) was obtained for these varieties and all three varieties were licensed from the University by the Maine Potato Board. More varieties will be released in the coming years as long as they show commercial potential. Most are expected to involve PVP; however, depending on the market class and/or expected scale of production public releases may also be used.

Example Recent Maine Releases and Promising Selections. Selections that have performed particularly well in the 2016 ME Breeding Program and Maine regional and advanced trials were:

Chipping

Sebec

Tested as AF0338-17. It has yields similar to Atlantic in the S.E. with very little internal heat necrosis or hollow heart. It is not a storage chiper, but chips very well from the field and could have market potential as an alternative to Atlantic in the mid-Atlantic and Southeastern U.S. Chip growers need to reduce fertility levels and harvest it slightly later than Atlantic (when Atlantic has gone off grade due to internal defects) to obtain adequate specific gravity for out-of-field chipping.

AF4157-6

Early maturing with moderate to good yields, excellent chip color, good gravity, bruise resistance. It may work well from the field in the South and from storage in the north. Small tuber size and scab susceptibility are weaknesses. It has good yields for an early, but has been inconsistent.

AF4648-2

Mid-season maturity with good yields, chip color, gravity, and bruise resistance. This clone is common scab and PVY resistant with moderate resistance to late blight, pink rot, and soft rot. Susceptibility to greening was a problem in 2015 trials. It has potential for fresh market and as a chiper for conditions when common scab limits other varieties. Long-term chip color can be quite good as long as it is harvested before chilling conditions occur and then is stored at 50 to 55F. It does not chip well from cool storage and it is quite susceptible to powdery scab.

Other

Promising chipping candidates that will be tested again in 2017: AF5040-8 (mid-season, high yields, gravity > Atlantic, and good chip color, outstanding in 2014 and 2015 national trials, probably fits best as an alternative to Atlantic in the South); AF5429-3 (high specific gravity, excellent chip color, and resistance to golden nematode, verticillium wilt, and blackspot bruise).

Fresh market whites
Sebec Tested as AF0338-17. Widely adapted, medium to medium late, round to oblong tubers, slight net, fair to good appearance, low internal and external defects, moderately susceptible to scab, susceptible to greening under fluorescent lights.

AF4138-8 Bright appearance with slightly netted, round to oblong tubers, excellent boiled quality, early to mid-season maturity, moderate scab resistance, and higher yields than Superior. Size profile can be smaller than Superior.

AF4648-2 Described above, smooth skin, bright appearance, round to oblong tubers, mid-season, good internal quality, very good common scab resistance plus PVY, late blight, pink rot, and soft rot resistance.

Other Promising fresh market whites that will be tested again in 2017: AF4552-5 (early maturity, moderate scab resistance, good yields, netted skin); AF5225-1 (high yields, netted skin, cream colored flesh, verticillium wilt resistance, scab susceptible); AF5280-5 (medium early, bright, moderate scab resistance, golden nematode resistance, large tubers); AF5450-7 (medium-late maturity, bright, good scab resistance); NDAF102629C-4 (early, bright appearance, scab and blackspot resistant).

Russets or Long Whites

Caribou Russet Tested as AF3362-1. A medium-late maturing, dual-purpose russet with fair to good appearance, long to oblong tubers, low external defects, moderate specific gravity, and good fry color. It has high yields, moderate to large tuber size, and good internal quality (except for internal heat necrosis in southern areas). It has moderate scab resistance and is resistant to golden nematode and bruise.

AF4124-7 A mid-season, high yielding russet with large tubers, good processing potential, and moderate scab resistance. Skin russetting is quite light and appearance is variable, but it can sometimes be attractive enough for fresh market.

AF4172-2 A mid-season, high yielding russet with good processing quality. It has resistance to blackspot bruise, shatter bruise, and net necrosis. It has a relatively heavy tuber set and needs a wide seedpiece spacing (~16” in ME) to achieve a desirable tuber size profile for most markets. It has attractive tuber appearance and good baked quality, but is scab susceptible. Appearance will only work for fresh market on sites where scab is not a problem.

AF4296-3 A late maturing, russet with good fry quality, fair tuber appearance, and high yields. Specific gravity is moderate (average of 1.079 in ME trials) and fry color from storage has been good. It has been an outstanding performer in the national fry processing trials (NFPT). It is moderately susceptible to scab, but has moderate verticillium resistance and good bruise resistance.

AF5312-1 A high yielding, mid-season russet with appearance like Russet Norkotah, good baked quality, and scab resistance. It is also moderately resistant to blackspot and shatter bruise.

Other Promising russet and long-white candidates that will be tested again in 2016: AF4872-2 (russet, good yields and excellent processing quality); AF5071-2 (russet, good yields and fry quality, processing); AF5091-8 (russet, good yields, possible fry processing); AF5164-19 (russet, good yields, possible dual purpose); AF5179-4 (russet, good yields, possible fry processing); AF5406-7 (russet, good yields, acceptable fry color, late maturity, late blight, pink rot, verticillium, fusarium, and scab resistant, processing); AF5406-10 (russet, good yields and
fry color, processing); AF5407-13 (russet, good yields and fry color, possible dual use); AF5468-5 (russet, good yields, fresh market); AAF08434-1 (russet, midseason, good fry color, possible PVY resistance); AAF07521-1 (russet, midseason, good fry color, large tubers, moderate late blight, pink rot, blackspot, and fusarium resistance); WAF10073-3Rus (russet, good yields and scab resistance, possible dual-purpose).

Reds and Specialty

AF4659-12 A yellow-fleshed “pinto-type” specialty variety with an interesting red and yellow skin pattern. It produces small, fingerling-type tubers that are excellent roasted, boiled, or fried.

AF4831-2 Bright red skin, oblong tubers, relatively small size profile, white flesh, medium to medium-late vine maturity.

AF5245-1 Purple skin, white flesh, mid-season maturity, high yields, scab resistant.

Other Promising red and specialty candidates that will be tested again in 2017: AF5412-3 (purple flesh, late blight, verticillium, and net necrosis resistance); AF5414-1 (red flesh, scab, late blight, and net necrosis resistance); several additional red-skinned, white fleshed clones.